Wednesday, October 20, 2021

Kubernetes vSphere CSI Driver

The main reason why I do blogging is to document some technical details and design patterns I discuss with my customers. Usually, I decide to write the blog post about some topic, when there are more then two customers wanting to know some technical details or experiencing some technical challenge.

Today I will write a first blog about Kubernetes. It seems to me that Kubernetes has finally reached the momentum and everybody is trying to jump into the wagon. It is obvious, that Kubernetes is the infrastructure platform for modern distributed applications. VMware has recognized this trend very early and integrated Kubernetes into VMware vSphere platform, also known as Tanzu. I do not want to describe Tanzu platform from product perspective because there are plenty of such blog posts across the blogosphere. Cormac Hogan is my favorite Tanzu/Kubernetes blogger, probably because in the past he was blogging about vSphere and storage related topics. Therefore, if you want to get some info about VMware Tanzu, I highly recommend Cormac's blog which is available at

In this article, I would like to describe the architecture overview of vSphere CSI Driver and some process flow behind the scene.

Disclaimer: Please note that this is just my personal understanding how it works and some things can be inaccurate or at very high detail. Nevertheless, if you believe there is something totally wrong, speak up in comments below the article.

First thing first, I'm the visual guy therefore let's start with overall solution architecture.

 The DevOps process to create persistent volume is following

  • DevOps Admin will ask Kubernetes cluster to create persistent volume via kubectl and YAML manifest (aka persistent volume claim)
  • CSI driver has control plane in K8s supervisor and CSI Driver agents on all K8s worker nodes
  • DevOps Admin request (claim) of persistent volume is sent to CSI driver control plane
  • CSI driver control plane is integrated with vCenter server via vSphere API
  • CSI driver control plane via vCenter API asks vSphere to create storage volume.
  • Storage volume can be VMDK file on VMFS filesystem, vSAN object, vVol (lun on physical storage) or NFS shared storage (mountpoint).
  • vCenter will create such storage volume via some ESXi host
  • CSI driver control plane can leave such storage volume unattached (aka FCD - First Class Disk) or it can attach the storage volume into particular ESXi host because eventually it knows into which K8s pod (container) such volume should be attached. And it also knows in which K8S Worker Node (linux guest os on top of virtual machine) the K8s pod is running, therefore, it dynamically attach the volume (it leverages hot-plug/hot-add capability) to particular virtual machine.
    • Note 1: block persistent volumes are attached to virtual machines via PVSCSI driver as it supports higher number (64) of disks and as virtual machine supports up to four (4) SCSI adapters, single VM (K8s worker node) can have up to 256 volumes.
    • Note 2: CSI driver can add additional PVSCSI adapters to VM dynamically
    • Note 3: It only works when VM addvaced setting "devices.hotplug" is enabled, which is default setting.
  • Finally, CSI driver agent detects new storage volume within K8s worker node (linux guest os) and because it knows into which K8s pod (linux container / chroot) the particular volume should be attached, it will attach it to the desired container (pod).

Hope I did not forget something in the automated workflow vSphere CSI driver is doing :-)

I guess now you would ask me, how DevOps admin issues persistent volumes claims into K8s cluster, right?

Well, it is two step process. The first of all, K8s cluster must know K8s Storage Class which is later used for persistent volume claims. Storage Class is just a mapping between vSphere Storage Policy and K8s Storage Class object (aka kind). If you are not yet familiar with VMware vSphere SPBM (Storage Policy Based Management), please read this.

The second step is to create Persistent Volume Claim, describing the particular storage request.

Examples of both Kubernetes (YAML) requests are below. 


I believe examples above are self-explanatory. 

Hope this article helps broader VMware user community to understand what is under the cover.



Monday, October 04, 2021

2-Node vSAN Direct Connect and LACP

One of my customers is using 2-node vSANs on multiple branch offices. One of many reasons of using 2-node vSAN is the possibility to leverage existing 1 Gb network and use 25 Gb Direct Connect between ESXi hosts (vSAN nodes) without the need of 25 Gb Ethernet switches. Generally they have very good experience with vSAN, but recently they have experienced vSAN Direct Connect outages when testing the network resiliency. The resiliency test was done by administrative shutdown of one vmnic (physical NIC port) on one vSAN node. After further troubleshooting, they realized their particular NICs (Network Adapters) do not propagate link down state to the physical link, when vmnic is administratively disabled by command "esxcli network nic down -n vmnic2". 

It is worth to mention, that such network outage does not mean 2-node vSAN outage because that's the reason why we have vSAN witness, however, vSAN is in degraded state and cannot provide mirror (RAID1) protection of vSAN objects.

Such network behavior is definitely strange and we have opened discussion and root cause analysis with hardware vendor, however, we have also started the internal discussion about design alternatives we have to mitigate such weird situations and increase resiliency and the overall availability of vSAN system.

Here are three design options how to implement direct connect networking between two ESXi hosts.

Design Option 1 - Switch independent teaming with explicit fail-over

Option 1 is using single VMkernel interface (vmk2) connected to single vSwitch portgroup which is using two uplinks with explicit fail-over teaming where vmnic2 is the explicit active uplink and vmnic3 will be used only in case vmnic2 is not available.

This design option is generally recommended by VMware.

Benefits: simple configuration, highly available solution

Drawbacks: in case of link state hardware problem, you can be in situation when one vSAN node is using VMkernel interface via vmnic2 uplink and 

Design Option 2 - Link Aggregation (LACP)

Option 2 is using single VMkernel interface (vmk2) connected to single vSwitch portgroup having single logical uplink (LAG) which is backed by two uplinks (vmnic2, vminc3) bonded into the port-channel. In such network configuration, both uplinks are active. It is worth to mention, that in 2-node configuration, LACP load balancing algorithm can help with load balancing of vSAN traffic across both uplinks, but the benefit of LACP is periodical heart beating (sending LACPDU) which is by default done every 30 seconds (slow LACP). For more information LACP timers read this blog post.

Benefits: LAG virtual interface with LACPDU heart beating can mitigate the risk of black hole scenario in case of problems with link state.


  • LACP configuration is more complicated than switch independent teaming, therefore it has a negative impact on manageability. 
  • Network availability is not guaranteed with multiple vmknics in some asymmetric failures, such as one NIC failure on one host and another NIC failure on another host. However, more bundled links can increase vSAN traffic availability, because vSAN L3 connectivity would stay up and running until single L1 link is up.

Useful LACP commands

  • esxcli network vswitch dvs vmware lacp status get
  • esxcli network vswitch dvs vmware lacp stats get
  • esxcli network nic down -n vmnic2 
  • esxcli network nic up -n vmnic2

Design Option 3 - Two vSAN Air Gap Network

Two vSAN Air Gap Networks actually means two vSAN vmkernel interfaces connected to two totally independent (air gap) networks.

Benefits: Little bit easier configuration than LACP.


  • Setup is complex and error prone, so troubleshooting is more complex. 
    • Requires multiple L3 VMkernel interfaces for vSAN traffic. 
  • Network availability is not guaranteed with multiple vmknics in some asymmetric failures, such as one NIC failure on one host and another NIC failure on another host. 
  • Source: Pros and Cons of Air Gap Network Configurations with vSAN

Conclusion and design decision

In this blog post, I have described three different option of network configuration for vSAN direct connect. I personally believe, the design option 2 (LACP for vSAN Direct Connect) is the optimal design decision, especially if NIC link state propagation is not reliable as is the case for my customer. However, the design option 2 is solving the issue as well. The final design decision is on the customer.

Friday, October 01, 2021

Enhanced Load Balancing Path Selection Policy

This blog post will be very short.

Few years ago I wrote the blog post about this topic. It is available here so read it for further details.

What we have today realized with my colleagues, this VMW_PSP_RR sub-policy options is enabled by default, therefore VMware Round Robin multi-pathing policy is considering I/O latency for optimal storage path selection.

The ESXi setting can be validated in ESXi shell by command

esxcfg-advcfg -g /Misc/EnablePSPLatencyPolicy 

where the output in ESXi 6.7 U3 and above is

Value of EnablePSPLatencyPolicy is 1

Note: 1 is TRUE.

This is the reason, why you can observe different traffic via different storage paths.